
IT ISD Simple Relational Algebra / SQL Tutorial 7

University of Glasgow
Dip / MSc Information Technology

Information Systems and Databases

Tutorial Week 7 – Simple Relational Algebra and SQL

Richard Cooper

November 12th 2009

1.The following is the schema of the bank account database:

customer(ID, forename, surname, sex, address, occupation)
account(accountno, type, balance, dateOpened, inBranch)
owner(accno, custID)
branch(branchNo, braddress, manager)
employee(staffNo, forename, surname, empbranch, supervisor)

Give relational algebra programs and SQL queries to retrieve the following:

a) All the types of account currently in existence.

This is a simple projection of one of the columns from the Account table, i.e.:

RA π type (Account)

SQL SELECT DISTINCT type
 FROM Account;

Note that the relational algebra removes duplicates by definition, but you have to

explicitly request this in SQL.

b) The account number, type and balance of all accounts at branch number 6.

Now you have to pick up the rows in Account for which the branch number is 6 and
then project out the columns requested, i.e.:

RA Branch6 ← σ inBranch = 6 (Account)
 Result ← π accountNo, type, balance (Branch6)

SQL SELECT accountNo, type, balance
 FROM Account
 WHERE inBranch = 6;

Selecting and then projecting is a very common pattern.

c) The ID and surname of the owner(s) of account number 23509.

Now having picked out one record from the Owner table, we must join the result with
the Customer table toget to the surname required.

RA Own23509 ← σ accno = 23509 (Owner)
 Cust23509 ← Own23509 custid = id Customer
 Result ← π id,surname (Cust23509)

IT ISD Simple Relational Algebra / SQL Tutorial 7

The pattern select-join-project is the dominant one for what I have called "simple"
queries - i.e. ones in which you just have to connect up a set of tables and pick some
rows and columns from the result

SQL SELECT Customer.id, Customer.surname using table & attribute name
 FROM Customer, Owner as tuple cursor to identify columns
 WHERE Owner.custID = Customer.id AND Owner.accNo = 23509;

 SELECT C.id, C.surname using table alias as tuple cursor
 FROM Customer C, Owner O
 WHERE O.custID = C.id AND O.accNo = 23509;

 SELECT id, surname using an implicit tuple cursor for
 FROM Customer, Owner attributes as column names which
 are unique
 WHERE custID = ID AND accNo = 23509;

There are three versions above, one for each of the three types of tuple cursor
variable - all three work as there is no confusion about column names.

d) The account number and balance of any accounts owned by customers with the
surname, ‘Getty’.

This is the same as the last one except that now you have to join three tables to get
from the surname data to the account balance.
RA GCust ← σ surname = ‘Getty’ (Customer)
 GOwns ← GCust id = custid Owner
 GAccs ← GOwns accno = accountno Account
 Result ← π accno, balance (GAccs)

SQL SELECT Account.accountNo, Account.balance
 FROM Customer, Owner, Account
 WHERE Account.accountNo = Owner.accno
 AND Owner.custID = Customer.id AND Customer.surname = 'Getty';

To avoid case problems with data values in Oracle use function UPPER or
LOWER

Either AND UPPER(Surname) = 'GETTY'

Or AND LOWER(Surname) = 'getty'

Remember two things for cases like this:

 You must include all table names in the FROM clause not just the ones
explicitly mentioned in the question.

 You must include the join condition without this you get everything printed
out - possibly many times.

IT ISD Simple Relational Algebra / SQL Tutorial 7

e) The full details of any accounts owned by customers giving their occupation as
"turf accountant".

This is the same as the last one:
RA TAs ← σ occupation = “Turf Accountant” (Customer)
 TAOwn ← TAS id=custId Owner
 TAAcc ← TAOwn accno = accountNo Account (all account & customer info)

 Result ← π accno, type, dateOpened, balance, inBranch (TAAcc)

SQL SELECT Account.*
 FROM Account, Owner, Customer
 WHERE accountNo = accNo AND id = custID
 AND occupation = 'Turf Accountant';

f) The surname of each employee and his or her supervisor.

This is a bit trickier - in this case we must join a table with itself:
RA EmpSup ← Employee supervisor = staffno Employee
 Result ← π esurname, ssurname (EmpSup)

Actually, column renaming is more complicated - internally the system remembers
which one comes from where.

SQL SELECT E.surname AS 'Employee', S.surname AS 'Supervisor'
 FROM Employee E, Employee S
 WHERE E.supervisor = S. staffNo;

In SQL, it is now absolutely vital to define our own tuple cursor variables - E and S
- to distinguish the two tables and which columns we mean when we use the column
names.

g) The full details of any customers having accounts with balances over £1,000,000,
where the account is at a branch employing someone with the same surname as
the customer.

If you want to try this out, insert records first so that data exists to be selected. Joins
are usually done using foreign keys but here we are looking for matching surnames.

 INSERT INTO Employee VALUES(300,'Jane', 'Barr', 2, 217);
 INSERT INTO Employee VALUES(301, 'Susan', 'Gibson', 3, 217);

As usual, select using any constants in the question first, do some joins and then
project out the columns required. The third join is the strange one. In the tutorial,
we noted that using intersection would also work. This requires picking the
surname and empBranch columns from MCusts and from Employee, then doing the
intersection, but then you have to rejoin the result with Customer to get the
information.
RA MAccs ← σ balance > 1000000 (Account)
 MOwns ← MAccs accountNo=accno Owner
 MCusts ← Customer id = custID MOwns (all cust. acc info)
 Crooks ← MCusts surname, inBranch = surname, empBranch Employee
 Answer←π id, C.surname, C.Forename, sex, address, occupation (Crooks)

IT ISD Simple Relational Algebra / SQL Tutorial 7

 SQL SELECT Customer.*
 FROM Customer, Owner, Account, Employee
 WHERE accountNo = accNo
 AND id = custID
 AND Employee.surname = Customer.surname
 AND Employee.empBranch = Account.inBranch
 AND balance > 1000000;

Note the use of Customer.* to get all the columns from Customer and none of the
others.

